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Abstract. A statistical model is developed for estimating species richness and accumu-
lation by formulating these community-level attributes as functions of model-based estimators
of species occurrence while accounting for imperfect detection of individual species. The model
requires a sampling protocol wherein repeated observations are made at a collection of sample
locations selected to be representative of the community. This temporal replication provides
the data needed to resolve the ambiguity between species absence and nondetection when
species are unobserved at sample locations. Estimates of species richness and accumulation are
computed for two communities, an avian community and a butterfly community. Our model-
based estimates suggest that detection failures in many bird species were attributed to low
rates of occurrence, as opposed to simply low rates of detection. We estimate that the avian
community contains a substantial number of uncommon species and that species richness
greatly exceeds the number of species actually observed in the sample. In fact, predictions of
species accumulation suggest that even doubling the number of sample locations would not
have revealed all of the species in the community. In contrast, our analysis of the butterfly
community suggests that many species are relatively common and that the estimated richness
of species in the community is nearly equal to the number of species actually detected in the
sample. Our predictions of species accumulation suggest that the number of sample locations
actually used in the butterfly survey could have been cut in half and the asymptotic richness of
species still would have been attained. Our approach of developing occurrence-based
summaries of communities while allowing for imperfect detection of species is broadly
applicable and should prove useful in the design and analysis of surveys of biodiversity.

Key words: biodiversity; conservation; detection heterogeneity; occurrence heterogeneity; site-
occupancy models.

INTRODUCTION

Species richness provides a fundamental measure of
community status in quantitative assessments of bio-

logical diversity. Species richness is used in the develop-

ment of ecological theory (MacArthur and Wilson 1967,

Hubbell 2001) and in applied problems focused on the

conservation of biodiversity. Importantly, the richness

of species in a community usually cannot be observed

directly because a complete enumeration of every species

is seldom feasible. In practice, a sample of the

community is collected or observed, and species richness

is estimated from the data obtained in the sample.

Therefore, the accuracy of an estimate of species
richness depends on both the method of data collection

(which includes the sampling design) and the statistical

model used to analyze the data.

Although natural communities are composed of

individual plants or animals, a representative sample

of the community is difficult to obtain using individual-

based encounters (see Gotelli and Colwell [2001] for

some exceptions). In many surveys, a community is

divided into spatial sample units (e.g., quadrats or plots)

that collectively include every species in the community.

Careful attention to spatial scale (i.e., the grain and

extent of sampling) is obviously required to define the

community and its species unambiguously (Peterson and

Parker 1998). Historically, ecologists were advised to

study communities in regions considered to be ‘‘rela-

tively homogeneous’’ with respect to habitat (MacAr-

thur 1972); however, such regions are almost never

found in practice because some degree of habitat

heterogeneity exists at every spatial scale of practical

importance. Furthermore, important connections may

exist among the spatial variation in habitat, the

community’s structure, and the population dynamics

of individual species (Hanski and Gilpin 1997, Wiens

2002). These connections are increasingly appreciated in

modern ecology and should be considered in designing

surveys of natural communities.

Once a region of sampling is selected in such surveys,

the finite number N of distinct species in the community

is determined unambiguously because the spatial extent
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of the community is bounded. Though N is sometimes

used to denote ‘‘local’’ species richness (e.g., Colwell and

Coddington 1994), this distinction is really unnecessary

because the region selected for sampling provides the

spatial context needed to define and interpret N. But

how should N be estimated once the community has

been sampled?

Various statistical approaches, many developed for

use in nonecological problems, have been used to

estimate species richness. These approaches may be

classified into four categories: (1) extrapolation of

species-accumulation curves (Gotelli and Colwell 2001,

Ugland et al. 2003), (2) parametric models of the

apparent species-abundance distribution (Pielou

1977:chapter 18), (3) nonparametric models based on

sampling theory (Bunge and Fitzpatrick 1993), and (4)

community analogs of capture–recapture models of

demographically closed populations (Nichols and Con-

roy 1996, Boulinier et al. 1998, Dorazio and Royle

2003). A review or comparison of all of these approaches

is beyond the scope of our paper.

Our view of the estimation problem is that species

richness, species accumulation, and other attributes of

community structure are most naturally formulated

using models of individual species occurrence that

explicitly account for the imperfect detection of a species

during sample collection (Dorazio and Royle 2005). We

combine community-level and species-level attributes in

the same modeling framework, allowing either com-

munity-level or species-level estimands to be evaluated

as needed in specific problems. This versatility is not

shared by any of the existing methods of estimating

species richness. For example, estimating N from the

asymptote of an empirical species-accumulation curve,

one of the most popular approaches, is intuitively

attractive because it honors the axiomatic increase in

species number with increases in area sampled (Connor

and McCoy 1979, Coleman 1981, Coleman et al. 1982,

McGuinness 1984, Rosenzweig 1985, Lomolino 2000);

however, this approach may fail in communities that

contain many rare species (Fisher 1999, Novotny and

Bassett 2000) or in communities of species that are

common but difficult to detect. Some statistical ap-

proaches attempt to overcome these difficulties by

explicitly assuming that all species are not equally well

detected (Burnham and Overton 1979, Nichols and

Conroy 1996, Norris and Pollock 1996, Coull and

Agresti 1999, Pledger 2000, Basu and Ebrahimi 2001,

Tardella 2002, Dorazio and Royle 2003, Mao and

Colwell 2005, Mao et al. 2005). Many of these

approaches were developed for estimating the size of a

population from the repeated observations of marked

individuals in capture–recapture surveys. In the context

of estimating species richness, the detections of species

encountered at different sample locations are analogs of

the recaptures of marked individuals at different sample

times. Therefore, for each species observed in the survey,

a vector of observations may be constructed to indicate

locations where the species was detected (e.g., (0, 0, 1, 1,

0) for detections at locations 3 and 4). The sample

matrix of these vectors (one for each observed species) is

sometimes called an ‘‘incidence matrix’’ (Colwell et al.

2004); however, it is clear that a zero may indicate that a

species is absent at that location or that the species is

present but undetected at that location. In other words,

there is an inherent ambiguity between detection and

occurrence that cannot be resolved by viewing sample

locations as replicate observations. Existing models of

such incidence matrices either assume that every species

is present at every sample location, though possibly

undetected, or they admit an explicit confounding

between species presence and detectability. In either

case, these models cannot be used to construct

occurrence-based summaries of community-level attrib-

utes (Dorazio and Royle 2005).

We believe it is necessary to consider sampling designs

and models that allow the occurrence of a species to vary

with location while accounting for imperfect detect-

ability; therefore, additional sampling is required to

resolve the ambiguity between species occurrence and

detection. In particular, each sample location must be

sampled repeatedly, and the total duration of the survey

must be kept sufficiently short that local extinctions or

colonizations of species are unlikely. The latter con-

straint is needed to ensure that site-specific species

occurrence and N remain constant during the survey.

In this paper, we describe a statistical model for

estimating the richness and accumulation of species

based on elemental models of species occurrence and

detection. Our previous efforts (Dorazio and Royle

2005) were limited to the estimation of species richness

and similarity. Here, we develop a reparameterized

model that allows species-accumulation curves to be

estimated from estimates of species richness and species

occurrence. Such curves may be used to compare the

richness of different communities at comparable levels

of sampling effort (Colwell and Coddington 1994,

Gotelli and Colwell 2001), to improve the efficiency of

future community surveys (Soberón and Llorente 1993,

Colwell and Coddington 1994), or to select priority

areas for conservation in the design of natural species

reserves (Margules et al. 2002, Cabeza et al. 2004). We

illustrate our method by estimating species accumula-

tion curves of avian and butterfly communities.

PROTOCOL FOR SAMPLING COMMUNITIES

We describe here a protocol for sampling commun-

ities based on presence–absence data (more correctly,

detection–nondetection data) that can be applied to

many taxa and in many settings. In this sense, the

protocol is quite general and can be applied in many

surveys of biodiversity. We assume that the community

to be surveyed is divided into spatial sample units (i.e.,

distinct locations) and that a proper consideration of

spatial scale is exercised in defining the community (as

noted in Introduction). Furthermore, we assume that
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appropriate procedures (e.g., randomization, stratifica-

tion, or clustering) have been used to select a sample of

units that is representative of the community. In this

way, we ensure that inferences derived from the sample

are in fact relevant to the community.

Once the sample of locations has been selected, each

location must be visited repeatedly (at least twice),

recording the list of species actually detected. Ideally,

species should be detected at each location using the

same level of effort on all sampling occasions. For

example, the time spent sampling, the method(s) of

detection, and even the identities of observers should be

standardized to the extent that this is possible. While

standardization helps to reduce variation among sam-

pling occasions in the probability of detecting individ-

uals of each species, our model of species detection can

be extended to accommodate situations that prevent the

use of standardized sampling protocols. A final require-

ment of our sampling protocol is that the entire survey

must be completed within a sufficiently short time that

local extinctions or colonizations cannot change the

composition of species that occupy a sample location. In

other words, each species is assumed to be present or

absent at each sample location and this state is assumed

to remain fixed during the survey. In more conventional

models the assumption of closure to changes in species

composition is usually made for the entire community of

N species. In our model, closure is assumed for each

sample location. Kendall (1999) provides a good

discussion of the consequences of violating the closure

assumption.

The purpose of temporal replication at each sample

location is to provide the information needed to estimate

the probability of detecting each species (given that it is

present) separately from its probability of occurrence.

By using temporal replication at each site, we essentially

remove the ambiguity of observed zeroes that occur at

locations where a species is not detected. (Recall that

such nondetections can arise because individuals of the

species are truly absent at a sample location or because

these individuals are present but undetected.) The

ambiguity can be resolved by properly modeling the

temporally and spatially replicated species detections.

Although a minimum of two visits is needed at each

sample location, a higher number of temporal replicates

(subject to the restriction on total survey duration) is

obviously desirable, particularly in communities domi-

nated by species that are difficult to detect. In the next

sections, we briefly describe two communities that were

sampled using the protocol that we advocate.

North American breeding bird survey (BBS)

The BBS is a continental-scale survey of birds that has

been conducted since 1966 and includes more than 4000

roadside routes located in North America (Robbins et

al. 1986, 1989, Sauer et al. 1996). Each route is 39.4 km

and contains 50 equally spaced sites. At each of these

sites, an observer records the number and identity of

each species detected (visually or aurally) within a 3-min

period. In the conventional BBS sampling protocol, each

roadside route is visited only once annually; however, in

1991 several routes were sampled repeatedly during the

breeding season to evaluate the variation in bird counts

both between and within sites. The data used in our

analysis were collected at one of these routes located in

Maytown, Alabama, USA (BBS route number 017).

This route was visited by the same observer on 11

different days in the month of June.

Survey of butterflies in Swedish grasslands

In July 1997, a survey was completed to estimate the

number of butterfly species present within a region of

grazed seminatural grasslands located in south-central

Sweden (Söderström et al. 2001, Vessby et al. 2002).

These grasslands occur as small (mean size 6 ha) habitat

fragments and are a common part of the agricultural

landscape in Sweden. Twenty grasslands thought to be

representative of the region were selected for sampling.

A square route (100 3 100 m) was located within each

grassland and used to delineate a 400-m transect for

sampling. Surveyors walked along each route at

constant speed (20 m/min) and counted all butterfly

species detected within 1 m of the transect. Each of the

20 routes was visited on 18 different days in the month

of July.

MODEL DESCRIPTION

Preliminaries and definitions

Let N denote the unknown number of distinct species

that occupy a prescribed region, and suppose J

representative sites within this region are selected for

sampling. If M denotes the total number of species that

are present among all J sample locations, we note that

M � N by definition. As the number of locations J in the

sample increases, M approaches N, the total size of the

community; therefore, M can be interpreted as an

ordinate of a species-accumulation curve whose asymp-

tote is N.

We consider surveys wherein each of the J sites is

visited several times and the identities of all species

detected during each visit is noted. The total duration of

the survey must be sufficiently short that N may safely

be assumed to remain constant in the time required to

complete the survey. Therefore, the traditional ‘‘closure’’

assumption, which precludes an addition (or subtrac-

tion) of species in the community as a consequence of

local colonization (or extinction) events, is satisfied.

Let xij denote the number of times that species i

(¼ 1, . . . , N) is detected in K visits to site j (¼ 1, . . . , J).

For clarity, we assume that K is identical at each of the J

sites, but a balanced design is not an essential part of the

survey. Repeated observations (K . 1) at each site are

crucial, however, because separate parameters for the

occurrence and detection of each species are not

identifiable in the absence of such replication (see Model
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description: Modeling heterogeneity in occurrence and

detection of species).

Let xi ¼ (xi1, xi2, . . . , xiJ ) denote a vector of the J

site-specific observations of species i. At the completion

of the survey, suppose n , N distinct species are

actually detected. For our purposes, it is convenient to

order the observation vectors as follows: xi 2 f(K þ 1)J

� 1 observable vectorsg for i¼ 1, . . . , n; xi¼ 0 for i¼ n

þ 1, . . . , N. This ordering implies a partitioning of the

N 3 J matrix of observation vectors (X) into an

observed portion Xn (the first n rows of X) and an

unobserved portion, which includes species that are

undetected in the survey (Table 1). Based on this

partitioning, it is also useful to consider an N 3 J

matrix of binary indicators Z, whose elements denote

the presence (zij ¼ 1) or absence (zij ¼ 0) of species i at

site j. Note that Z is only partially observed. A species

must be present at a site before it can be detected;

therefore, zij must equal 1 if xij . 0. However, if xij¼ 0,

two mutually exclusive possibilities determine the value

of zij: (1) species i is present at site j but undetected (zij
¼ 1), or (2) species i is absent at site j (zij¼ 0). In Model

description: Predicting species accumulation as a func-

tion of species occurrence, we show that allowing the

occurrence of species to vary spatially (i.e., among

sample sites) through the definition of Z simplifies our

calculation of species accumulation curves, as well as

other estimands of ecological interest (e.g., similarity in

species composition).

Modeling heterogeneity in occurrence

and detection of species

We first develop a model of the site-specific detections

of a single species by conditioning on the probabilities of

occurrence and detection of that species. Our develop-

ment is similar to that used in the logistic-normal model

of heterogeneous detectability (Coull and Agresti 1999,

Fienberg et al. 1999); however, the logistic-normal

model conditions only on the site-specific detection

probability of each species.

Let wij denote the probability of occurrence of species

i at site j and hij denote the probability of detection of

species i, given that it occurs at site j. We assume that the

indicators of occurrence are independent outcomes of a

Bernoulli process with probability mass function

pðzijjwijÞ ¼ w
zij

ij ð1� wijÞ1�zij : ð1Þ

In addition, we assume that if species i occurs at site j (zij
¼ 1), the number of detections is assumed to have a

binomial(K, hij) distribution

pðxijjzij; h ijÞ ¼
K
xij

� �
h

xij

ij ð1� hijÞK�xij

� �zij

: ð2Þ

In contrast, if species i is absent at site j (zij¼ 0), then xij
is assumed to equal zero with probability one.

Dorazio and Royle (2005) showed that removal of zij
(by summation) conveniently provides the marginal

probability of the observed number of detections:

pðxijjhij;wijÞ ¼ wij
K
xij

� �
hxij

ij ð1� hijÞK�xij

þ ð1� wijÞIðxij ¼ 0Þ ð3Þ

where I(�) denotes an indicator function, which equals

one when its argument is true and is zero otherwise.

Note that Eq. 3 specifies the density of a zero-inflated

binomial outcome. Under this model, if species i is not

detected at site j (i.e., xij ¼ 0), species i is either absent

(with probability (1 � wij)) or present but undetected

(with probability wij(1 � hik)
K). Eq. 3 has been used in

models of site occupancy (MacKenzie et al. 2002) for

individual species; therefore, in that sense, our model

specifies a multispecies, site-occupancy model.

Having developed a model of the site-specific detec-

tions of a single species, we now extend the model to

combine information among different species in the

community. In particular, the effects of species- and site-

specific differences in rates of occurrence and detection

are parameterized on the logit scale as follows: logit wij¼
uiþaj and logit hij¼viþbj, where ui and vi denote species-

level effects, and aj and bj denote site-level effects. The

species-level effects are assumed to be centered at zero;

therefore, aj denotes a logit-scale parameter for the mean

probability of occurrence among all species at site j, and

bj denotes a logit-scale parameter for the mean proba-

bility of detection among all species at site j. A linear

combination of parameters and site-level covariates may

be substituted for aj or bj , assuming of course that such

covariates are available and are thought to be informa-

tive about the magnitude of wij or hij. In the absence of

site-level covariates (as in our avian and butterfly

surveys), we assume that aj and bj have constant values,
say a and b, at each of the J sites.

Species-specific differences in the probabilities of

occurrence and detection are modeled by specifying a

parametric form for the joint distribution of ui and vi.

For example, we assume [ui, vi jR] ; normal(0, R), which
allows us to specify the heterogeneity in occurrence and

TABLE 1. An N 3 J matrix of species- and site-specific
detections, X, and a partially observed matrix Z (also N 3
J), whose elements indicate species- and site-specific occur-
rence.

Species i

Site j

Observed Partially observed

1 2 � � � J 1 2 � � � J

1 x11 x12 � � � x1J z11 z12 � � � z1J
2 x21 x22 � � � x2J z21 z22 � � � z2J
..
. ..

. ..
. ..

. ..
. ..

. ..
.

n xn1 xn2 � � � xnJ zn1 zn2 � � � znJ
n þ 1 0 0 � � � 0 znþ1,1 znþ1,2 � � � znþ1,J
..
. ..

. ..
. ..

. ..
. ..

. ..
.

N 0 0 � � � 0 zN1 zN2 � � � zNJ
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detection among species using only a few parameters

(specifically, r2
u;r

2
v ;and ruv, the unique elements of the 2

3 2 matrix R).

Estimating model parameters and species richness

Let f(xij j ui, vi, a, b) denote the conditional probability
of the observed number of detections of species i at site j

given the logit-scale parameters for wij and hij. This is

obtained by substituting into Eq. 3 the logit-scale

parameters for wij and hij (cf. Eq. 5 in Dorazio and Royle

[2005]). Adopting a conventional treatment of random

effects, a likelihood function for the fixedparameters (a,b,
R) may be derived by integrating a conditional likelihood

over the distribution of random effects parameters. For

example, if we assume that the J observations of each

species are conditionally independent, the marginal

probability of the observation vector xi is

qðxija; b;RÞ ¼
Z ‘

�‘

Z ‘

�‘

YJ

j¼1

f ðxijjui; vi; a; bÞ
" #

3 gðui; vijRÞ dui dvi ð4Þ

where g(ui, vi jR) specifies the bivariate normal density

assumed for ui and vi. Although the integrations in Eq. 4

can be approximated using numerical quadrature (Liu

and Pierce 1994, Pinheiro and Bates 1995) or stochastic

methods (e.g., Monte Carlo), these techniques can be

computationally intensive to implement. Furthermore,

and more importantly, estimates of the ui parameters

and their uncertainties are needed to calculate species

occurrence and other ecologically relevant quantities.

Therefore, Dorazio and Royle (2005) adopted a

Bayesian framework for parameter estimation and

inference, making only minimal use of the margin-

alization in Eq. 4. They showed that the multinomial

likelihood based on the detections of the n observed

species and their logit-scale contributions to detection

and occurrence is

pðXn; n; u; vja; b;RÞ

¼ n!Y
h

nh!

1

1� qð0ja; b;RÞ

2
4

3
5

n

3
Y

h

YJ

j¼1

f ðxhjjuh; vh; a; bÞ
" #

gðuh; vvjRÞ
( )nh

ð5Þ

where nh¼ Rn
i¼1 I(xi¼ xh) denotes the number of species

that share detection sequence xh (h¼ 1, . . . , m) and u, v,

and n ¼ (n1, . . . , nm) each denote a vector of m � n

elements that correspond to the distinct values of xh
observed in the sample.

Here, we develop an alternative approach based on a

reparameterization of the model that allows it to be

fitted by Markov chain Monte Carlo (MCMC) sampling

without any numerical integration. This reparameteriza-

tion is easily specified in the BUGS language (Gilks et al.

1994) and can be fitted to data using WinBUGS

software (available online).5 (We provide the necessary

WinBUGS code in the Supplement.) To motivate our

reparameterization, note that if N was known, specifi-

cation of the hierarchical model for community struc-

ture would be complete without having to consider the

‘‘undetected’’ portion of the community in the like-

lihood, and there would be no difficulty in fitting the

model using MCMC. The difficulty with N being

unknown is that the dimension of the parameter vectors

u and v (and thus, w and h) changes each time another

MCMC draw of the parameter N is computed. To

obtain a model in which the dimension of the parameters

is constant, we create a supercommunity of species, one

that comprises the n observed species and an arbitrarily

large, but known, number of unobserved species for

which xi¼ 0 (i¼ nþ 1, nþ 2, . . . , N, Nþ 1, . . . , S). The

supercommunity size S is fixed, and thus the dimension

of the parameter vectors is constant (i.e., not a function

ofN). In taking this approach, we do not directly estimate

N as a parameter. Instead, we introduce an additional

latent indicator variable, say wi, which takes the value 1 if

a species in the supercommunity is a member of the

community available to be sampled and 0 otherwise. We

assume that fwig are independent, Bernoulli-distributed,
random variables indexed by parameter X. Obviously, wi

is observed for i ¼ 1, 2, . . . , n, but not otherwise. By

introducing the supercommunity of latent variables fwig
into the model, we effectively transform the problem of

estimating N into the equivalent problem of estimating

RS
i¼1 wi, which, of course, depends on the estimated value

of X.

Our reparameterized model does require that S be

assigned a sufficiently high value; however, in practice it

is a simple matter to assess the adequacy of any particular

choice of S. Recall that E(N)¼SX and that X is bounded

between 0 and 1; therefore, estimates of X will necessarily

decline as higher values of S are chosen. If the assigned

value of S is too low, the posterior distribution of X will

be concentrated near the upper limit of its range, and we

risk underestimating the true value of N. The obvious

solution is to increase S until the posterior of X is

centered well below its upper limit. However, higher

values of S also imply higher computational costs, so

some care is advised in assigning too high a value to S.

The concept of a supercommunity of S species may

seem artificial, but it also can be motivated quite

naturally. Suppose we observe n avian species after

sampling an individual BBS route somewhere in the

United States. We could apply the conventional

approach wherein species richness N is viewed as an

unknown, multinomial index to be estimated (Dorazio

and Royle 2005); however, it seems entirely reasonable

to specify some maximal species list, perhaps composed

of all known avian species in North America. Surely the

number of bird species living in proximity to an

5hhttp://www.mrc-bsu. cam.ac.uk/bugs/i
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individual BBS route could not exceed the total number

of known avian species in North America!

We complete our reparameterized model by assuming

mutually independent prior distributions for X, a, b, and
R. In particular, we assume a uniform(0,1) prior for X,

logit�1(a), and logit�1(b); inverse-gamma(a, b) priors for

r2
u and r2

v (a ¼ 0.1 and b ¼ 10 denote shape and scale

parameters, respectively); and a uniform(�1, 1) prior for
the correlation parameter quv ¼ ruv/rurv. The inverse-

gamma(e, 1/e) distribution, for some small e, is often

used as a default or objective prior of variance

parameters, particularly in models that maintain con-

jugacy between the prior and posterior distributions

(e.g., see Carlin and Louis 2000:149). Similarly, we use

the uniform distribution to specify our prior indifference

in the mean probabilities of detection and occurrence, in

the X parameter, and in the correlation parameter quv.
This set of priors was used in both of the analyses

described in Analysis of data sets.

Predicting species accumulation as a function

of species occurrence

We are interested in predicting the relationship

between the expected number of species that occur in

some prescribed region as a function of the area of that

region. Given our sampling frame, ‘‘area’’ is equivalent

to the aggregate number of discrete spatial units selected

from those that define the spatial extent of the

community. Unlike empirical species-accumulation

curves, our prediction is not confined to the particular

set of locations in the sample. If we adopt that

convention, the predicted species–area relationship will

depend on which locations are considered and on the

order in which they are aggregated. We view this as an

inherent limitation of rarefying (i.e., interpolating) and

extrapolating empirical species-accumulation curves

(Gotelli and Colwell 2001, Ugland et al. 2003). In

addition, we believe that predictions of species accumu-

lation should account for uncertainty in estimates of N

and species occurrence; therefore, in this section we

develop the posterior-predictive distribution of the

species-accumulation curve.

In Model description: Preliminaries and definitions, we

defined a matrix Z whose elements indicate the

occurrence (i.e., presence/absence) of each of the N

species in the community at each of the J sample

locations. Similarly, let Z̃ denote a N*3L matrix whose

elements indicate whether each species occurs at each of

L unsampled locations (spatial units). (We use an

asterisk, as in N*, to denote a random draw from the

simulated sample of the joint posterior distribution;

therefore, each predicted matrix of species occurrences Z̃

is associated with a single draw from the simulated

sample of the joint posterior.) According to Eq. 1,

predicting an element of Z̃, say z̃, is simply a matter of

computing a random draw from a Bernoulli(
~w)

distribution, where
~w denotes the predicted probability

of occurrence of species i in unit j. Similarly, predicting

the occurrence probability
~w is done by computing a

random draw from the normal(a*, r2�
u ) distribution and

transforming the result to a probability (using logit�1).

Therefore, predictions of occurrence Z̃ ultimately

depend on estimates of N and the model parameters

used to specify heterogeneity in species occurrence

probabilities. These predictions can be expressed for-

mally using the posterior-predictive density of a single

element of Z̃:

pðz̃jXn; nÞ ¼
Z

~
w 3 H

pðz̃j ~wÞpð ~wjHÞpðHjXn; nÞ d
~w dH

ð6Þ

where p(H jXn, n) denotes the joint posterior density of

model parameters and N. Note that our predictions of

species occurrence z̃ are not simply point estimates. By

integrating over the posterior uncertainty in N and

model parameters (as expressed in the joint density

p(H jXn, n)), we compute a distribution of predictions Z̃

that conditions only on the observed data (Xn, n). We

use the method of composition (Tanner 1996) rather

than direct integration to compute the sample of Z̃

values.

A sample from the posterior-predictive distribution of

species-accumulation curves is readily computed once

we have computed a sample from the posterior-

predictive distribution of species occurrences. Let M̃l

denote the cumulative number of distinct species that are

predicted to be present among the first l spatial units. In

other words, M̃l denotes an ordinate of the species-

accumulation curve with abscissa l (¼ 1, . . . , L). For a

particular draw of Z̃, we computeM̃l by summing only

those rows where species are predicted to be present,

that is, M̃l ¼ RN�
i¼1 I(z̃i� . 0) where z̃i� ¼ Rl

j¼1 z̃ij.

Repeating this calculation for each value of l yields a

single draw from the posterior-predictive distribution of

species accumulations [M̃1, . . . , M̃L jXn, n]. The sample

of predicted species-accumulation curves is computed by

repeating this sequence of calculations for each poste-

rior-predicted draw of Z̃.

In the Supplement, we provide code for fitting the

model and for computing species richness and accumu-

lation using the freely available software packages, R (R

Development Core Team 2004) and WinBUGS. Our

code uses the R package R2WinBUGS (Sturtz et al.

2005) to execute WinBUGS while running a session in

R. We also provide the data observed in our avian and

butterfly surveys.

ANALYSIS OF DATA SETS

Breeding bird survey

Seventy-five species of birds were detected in the

survey, and there was considerable variation among

species in the observed frequencies of detection at each

site (Fig. 1). We computed the posterior distribution of

species richness using the species- and site-specific

detections of all birds observed along the BBS route.
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The estimated size of the community exceeds the number

of species observed in the sample by a substantial

margin (Fig. 2). In fact, the posterior probability that

the avian community comprises only N ¼ 75 species is

essentially zero, and the estimated median and mean

values of species richness are 90.0 and 93.0, respectively.

These results are consistent with estimated levels of

heterogeneity in species occurrence and detection. For

example, the marginal distributions of species-specific

probabilities of occurrence and detection implied by our

estimates of the model parameters (Fig. 3) suggest that

detection failures in many bird species are attributed to

low rates of occurrence, as opposed to simply low rates

of detection. In other words, a substantial portion of the

community includes relatively uncommon species; there-

fore, it is not surprising that the estimated total number

of species in the community exceeds the number of

species observed in the sample.

We also computed the accumulation of species that is

predicted in samples of 1–100 sites (Fig. 4). The

FIG. 1. Number of times that each bird species was detected in 11 visits to each site of BBS route 017 (Maytown, Alabama,
USA). Species are numbered from the most detectable to the least detectable.

FIG. 2. Posterior distribution of species richness in the community of breeding birds.
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predicted species-accumulation curve fails to reach the

asymptotic richness of the community even if the

number of sample sites (and corresponding area

sampled) is twice as large as that actually used in the

BBS. Again, this result stems from the estimated rarity

of many bird species.

Butterfly survey

Twenty-eight species of butterflies were detected in the

survey, and, as in the BBS, there was considerable

variation among species in the observed frequencies of

detection at each site (Fig. 5). Unlike the avian

community, our posterior estimates of species richness

(median ¼ 28.0, mean ¼ 28.5) are close to the observed

number of butterfly species. In fact, the posterior

probability that N . 30 species is only 0.05 (Fig. 6).

These results are consistent with obvious differences

in the estimates of occurrence of butterfly and bird

species. The marginal distribution of estimated proba-

bilities of occurrence of butterfly species (Fig. 7) suggests

that many species are relatively common and that

repeated sampling within a site can substantially

FIG. 3. Distributions of probabilities of occurrence and detection of bird species based on estimates of model parameters (â ¼
�1.50, r̂u ¼ 2.20, b̂ ¼�1.81, r̂v ¼ 1.07.

FIG. 4. Predicted species-accumulation curve for the community of breeding birds. Each point along the curve corresponds to
an estimate of the mean of the posterior-predictive distribution. Error bars indicate 90% prediction intervals.
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increase the chances of detecting these species, even for

those whose probability of detection is not particularly

high. Therefore, it is not surprising that the estimated

size of the butterfly community is nearly equal in

magnitude to the number of species detected in the

sample.

We also computed the accumulation of species

predicted in samples of 1–30 sites (Fig. 8). The predicted

species-accumulation curve reaches the asymptotic rich-

ness within 10 sample sites, well below the number of

sites used in the survey. Again, this result stems from the

relatively high estimates of occurrence of many butterfly

species.

DISCUSSION

In this paper, we have described a sampling protocol

and statistical model for computing estimates of species

richness and species accumulation. A strength of our

FIG. 5. Number of times that each butterfly species was detected in 18 visits to each route. Species are numbered from the most
detectable to the least detectable.

FIG. 6. Posterior distribution of species richness in the community of butterflies.
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approach is that community-level and species-level

attributes are combined in the same modeling frame-

work; thus, community-level attributes, such as species

richness and accumulation, may be expressed naturally

as a function of occurrence of individual species.

The sampling protocol that we advocate requires

repeated observations at sample locations that are

selected to be representative of those locations that

encompass the spatial extent of the community.

Repeated sampling (i.e., temporal replication) at each

location provides the information needed to determine

probabilistically whether a species is absent at each

location or present but undetected (MacKenzie et al.

2002). The separation of species occurrence and detect-

ability is what allows us to estimate the number of

species N in the entire community, as well as other

occurrence-based, community-level estimands. Conse-

quently, our model-based estimators of species richness

and accumulation represent improvements over existing

methods; however, our estimators are not guaranteed to

be accurate simply because they allow species occurrence

to vary among sample locations. If a community

FIG. 7. Distributions of probabilities of occurrence and detection of butterfly species based on estimates of model parameters
(â ¼ 1.17, r̂u ¼ 0.96, b̂¼�1.87, r̂v ¼ 1.15.

FIG. 8. Predicted species-accumulation curve for the community of butterflies. Each point along the curve corresponds to an
estimate of the mean of the posterior-predictive distribution. Error bars indicate 90% prediction intervals.
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contains species that cannot be detected as a conse-

quence of inadequacies in sampling design or collection

methods (e.g., nocturnal animals that cannot be

observed in daytime surveys), then our estimates of N

will fail to include these species. Sampling deficiencies

exert a direct effect on the interpretation of the

parameter N, regardless of the model or method of

estimation. We believe that sampling design and

detection methods must be carefully considered in

advance of the survey, so that every species that is

present at a sample location is ensured to have some

nonzero probability of being detected.

Our model-based estimates of N are influenced also by

the form of the distribution used to specify heterogeneity

in species occurrence and detection probabilities. We

selected the bivariate normal distribution, but other

parametric or semiparametric forms may also be

considered. Such alternatives no doubt can influence

the estimated value of N because, in computing N, we

are necessarily extrapolating the number of unobserved

species based on patterns of detection and occurrence

inferred from the observed species. It is well known that

such extrapolations can be sensitive to model structure

and that conventional diagnostics for assessing a

model’s goodness of fit cannot be relied upon for

selecting a model that provides valid inferences for N

(Dorazio and Royle 2003, Link 2003). This problem is

especially acute in communities that are suspected to

contain many rare species. In fact, Mao and Colwell

(2005) have suggested that model-based estimates of N

for these communities should be regarded as lower

bounds that improve upon the observed number of

species n, a negatively biased estimate of N.

Our model-based predictions of species accumulation

are computed for a hypothetical sequence of locations

that are spatially distinct from the sample locations.

Therefore, while our predictions of species-accumulation

depend on sample data, they do not depend on a

particular ordering of the sample locations. As noted

earlier (in Model description: Predicting species accumu-

lation as a function of species occurrence), we view this

dependence as an inherent limitation of interpolating

(rarefying) or extrapolating empirical species-accumu-

lation curves (Gotelli and Colwell 2001, Ugland et al.

2003). Furthermore, such dependence is usually not

desired in practice. For example, in comparing the

species richness of different communities at some

common level of sampling effort (Colwell and Codding-

ton 1994, Gotelli and Colwell 2001, Colwell et al. 2004),

one normally does not want the comparison to be

affected by the location or number of units in the

original sample. Another advantage of our predictions

of species accumulation is that they account for the

uncertainty in estimating species richness and species

occurrence. By adopting a Bayesian framework for

inference and prediction, errors in estimation are

automatically incorporated in the prediction intervals

of our model-based, species-accumulation curve (Figs. 4

and 8).

Species accumulation curves can be used to improve

the efficiency of future community surveys (Soberón and

Llorente 1993, Colwell and Coddington 1994), so it is

natural to inquire about the effects of sample size

(number of spatial and temporal replicates) on our

model-based estimates of species richness and accumu-

lation. In Protocol for sampling communities, we noted

that the spatial coverage of the sample must be sufficient

to ensure that the sample is representative of the entire

community. We also emphasized that a minimum of two

visits are needed at each sample location so that the

conditional probability of detection of a species (that is,

given it is present) may be estimated separately from its

probability of occurrence. But how many temporal

replicates are needed? Should the number of temporal

replicates vary among sample locations? Unfortunately

answers to these questions depend on the underlying

probabilities of detection of each species, and these

probabilities usually are not known prior to completing

the survey. However, less abundant species are generally

more difficult to detect, so we may conclude that a

higher number of temporal replicates is obviously

desirable in communities that are thought to include

several rare species. The detectability of a species also

can vary with its habitat or behavior (e.g., as in ‘‘call

surveys’’ of amphibians where species are detected

aurally). In these circumstances, prior knowledge about

differences in detectability seems essential before one

could recommend a particular number or spatial pattern

of temporal replicates. Perhaps a sequential sampling

design is needed wherein the collection of each temporal

replicate is followed immediately by data analysis to

determine if estimates of model parameters and species

richness satisfy prescribed levels of precision (or other

design criteria). The development of such ‘‘stopping

rules’’ for additional sampling could provide enormous

practical benefits (e.g., time and cost savings) in routine

assessments of biological diversity.
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SUPPLEMENT

R and WinBUGS code for fitting the model of species occurrence and detection and example data sets (Ecological Archives
E087-050-S1).
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